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Abstract—An analysis is presented for the investigation of the effects of crack geometry in finite rectangular
plates. Three cases are considered : (1) crack at opposite edges,(2) crack in center, and (3) crack on one side only.
Each problem is formulated in terms of dual series equations and reduced by standard techniques to a Fredholm
integral equation, which is solved numerically. Numerical results are included for the strain energy and the
moment stress intensity factor. Comparison of the various cases demonstrates the possible effects of geometry
on the propagation of cracks in finite plates.

INTRODUCTION

THE OBJECTIVES of this analysis are to develop solutions for the deflections of finite
rectangular plates containing cracks and to determine the effects of geometry on propaga-
tion of the cracks. The plates are uniformly loaded in the transverse direction and are
unstressed in their plane ; therefore, only plate bending is considered. Three cases are studied :
two collinear external cracks of equal length, an internal crack centrally located and a
single external crack. For all cases, the cracks are symmetrically placed with respect to
parallel boundaries (Fig. 1).

Elementary plate theory and the notation given by Timoshenko and Woinowsky-
Krieger [1] are used throughout the analysis. The two plate boundaries perpendicular to
the line of the crack are simply supported ; therefore, the Levy—Nadai [2] form of solution
is used. Furthermore, the symmetry assumption is such that the shearing stress resultant is
zero along the line of the crack. A related problem was treated by Yang [3], who considered
the case of a finite plate with an internal support symmetrically placed with respect to
parallel boundaries. His problem was mixed with respect to displacement and shearing
force, and the slope was equal to zero along the line of the support. Thus, symmetry was
assumed about the line of the support, but the support was asymmetrically located with
respect to boundaries perpendicular to the line of the support. A Green’s function approach
was used to formulate the problem in terms of singular integral equations.

Since the plates in this analysis are finite, the mathematical solution for the undamaged
plate is formulated in terms of Fourier series. The effect of the various cracks is a mixing of
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the boundary conditions with respect to the moment and slope along the line of the crack ;
thus, the problems are reduced to solutions of dual series equations with a weight function.
Many solutions to mixed boundary-value problems involving dual series equations have
been presented in the literature. An excellent summary of different types of solutions is
given by Sneddon [4]. The application of dual series equations to boundary-value problems
involving the torsion and bending of cracked beams has been given by Westmann and
Yang [5], and to some extent their technique is followed here.

In order to solve the various problems, an assumption has to be made concerning the
nature of the singularity at the root of the crack. Williams [6] considers the bending of an
infinite plate containing a semi-infinite crack, and he finds that the moment stress resultant
is singular as the inverse square root of distance from the base of the crack. Among the
results included herein are the stress intensity factors, which give a measure of the tendency
of the crack to propagate [7]. It should be noted, however, that results near the tip of the
crack should include thickness effects. Knowles and Wang [8] and Hartranft and Sih [9]
have used a higher-order plate theory to deduce the effects of thickness in the vicinity of
crack tips. In the present analysis the change in the strain energy due to the presence of the
crack is computed in order to give a global estimate of the integrity of the cracked plate.

CASE 1I: CRACK AT OPPOSITE EDGES

The first case studied, shown in Fig. 1(a), is that of a finite plate damaged by two external
cracks of equal length located at opposite edges of the plate.t The plate is simply supported
at x = 0, 7, and the other two sides are either clamped or simply supported aty = +b. For

t The figure gives the geometry for a plate with boundariesatx = 0, 7y = +b.Toobtainactualdimensions,
the coordinates x = nX/a, y =7y/a with b =nb/a, c¢ = nc/a, are used.
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all cases studied, the plate is unstressed in its plane; a constant load g is supplied in Fhe
z direction, with corresponding displacement given by w(x, y). The differential equation
satisfied by w is

o*w ow  O*w

b‘;;‘i‘ a—xia—yz-f"g;g = qa‘/Dn‘*, (1)

where D = Eh*/12(1—v?) is the bending stiffness, E is Young's modulus, v is Poisson’s
ratio, and 4 is the plate thickness.

1. Clamped boundary conditions for y = +b
For the case where the plate is clamped at the two boundaries parallel to the line of the
crack, the boundary conditions are

6;2
wil=0, bi<bh x=0m, 2
0x
ow
W5M=O’ |y|=b5 Osxgnﬁ (3)
dy
3w Pw
- =0 =0 0<x<m, 4
ay3 +(2 V)axzay s y b sX n ( )
3w *w
e~ 0, y=00<x<g &}
ow
Ao = < . 6
3 0, y=0, c<x<nfl (6)

For the boundary conditions (5) and (6), the displacement is assumed to be symmetrical
about x = n/2.
The boundary conditions (2) can be automatically satisfied if w(x, y) is chosen in the form

w = w;+w,, (7)
where
4, 4 0 o0
W= e Y m7sinfmx),  w,= Y. Y,sin(m) (8)
D =15, m=1.3,..
and
ga*
Y, = “B‘[Am ch(my)+ B,,my sh(my)+ C,, sh(my)+ D, ,my chimy)], 9

where ch(x}, sh(x} are the hyperbolic sine and cosine with argument x. It is seen that w,
is a particular solution for (1) that also satisfies (2); w, satisfies the homogeneous equation
(1) and also satisfies (2). Application of the boundary conditions (3) and (4) reduces the
problem to the determination of a single constant D,,, and the other three constants are
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given in terms of D, as

4

A4, = —ns,n5[5h(ﬂ)+ﬁ ch(p)] - D, [B* +n sh*(B)], {10)
4
AB,, = — 5 sh(B)— D[n+ch*(B)], (11)
Cm = rIDm’ (12)
where
A = B+sh(f)ch(p), n={1+v)/(1-v), B = mb. (13)

The remaining boundary conditions (5) and (6) are mixed with respect to the slope and
moment, and they are written as the dual series equations

i m2D,(1 +k,) sin(mx) = i F,sin(mx), 0<x<cg, (14)
m=1,3,... m=1,3,..
i mD,, sin(mx) = 0, c<x<nf2, (15)
m=1,3,...
where
1 +k,, = [(1—v)*B%+4ch*(B)—(1+v)? sh3(B)]/3+v)(1—vA (16)
and
4
F, = —————-[(1 +v) sh(f)— (1 — v)B ch(f)— vA]. (17

" B+vrimiA

It can easily be shown that the weight function k,, approaches zero as m — oo. Methods of
solution for problems related to that defined by (14) and (15) are given by Sneddon [4]. A
related method has been given by Westmann and Yang [S], and a modification of their
technique is used here.

Two integral representations are needed to solve (14) and (15):

2 i J 1 (mt) sin(mx) = Jm J ((st) sin(sx) ds, (18)

m=1,3,... 0

2 X

©
m=1,3,...

J(mt) cos(mx) = J J ((st) cos(sx) ds+2 f [1+exp(ns)] I (st)ch(sx)ds. (19)
0 0
These identities can be easily derived by considering the contour integration of

ei1tz/2
—_— t)si d
fr cos(nz) 2)J 1{zt) sin(zx) dz

taken around the first quadrant for (18), and

cirtz/Z
e d
fr cos(nz/ 2)J 1(zt) cos(zx) dz



On the bending of cracked plates 1549
for (19). Equations (18) and (19) may be simplified by noting the well-known results [10]

J‘w J(st)sin(sx) ds = xt ™} (t2—x?) " *H(t—x), (20

0

fw Ji(st)cos(sx)ds = t 1 —xt™ }(x?—t?) *H(x—1). (21)

0

To solve (14) and (15), let
mD,, = a, = f @(t}J {(mt) de, (22)
0

where H(x} is the Heaviside function.

Equation (22) automatically satisfies (15) by virtue of (18) and (20) and introduces a
singularity in the bending moment M, proportional to the inverse square root of the distance
from the root of the crack. Such a singularity is in agreement with Williams [6], who discusses
the nature of singularities involved in plate bending problems. Equation (14) is written as

d e}
— Y al+k,)cos(mx) = —F(x)) 0<x<c¢ (23)
dX p=173,...
and, by substitution of (21) and (22), may be reduced to the Fredholm integral equation
of the second kind

o(p)+ jol 0K, dr = hp),  0<p<1 (24)
where
00) = (p0)" ' plpo) 5)
Hp) = 2 _i Fyd(mpo) 26)
y e

el

K(p,r) = 2rc2{ Y. mk,J (mpc) (mre)— f ? s[1+exp(ns)] 1 (rsc)l (psc) ds}. 270
0

m=1,3,..,
2. Simply supported boundary conditions for y = +b
When the plate has simply supported boundary conditions for y = +b, (3) becomes
*w
W,W = 0, lyl = b, 0 <x <7 (28)

Thus, (12) still governs, and the application of boundary conditions (28) gives

_ 4
A4, = ~n5m5[2 ch(B)+ B sh(B)] —2D,,[n sh(B) ch(B)+ B], (29)
- 4
AB, = s ch(B)—2D,, sh(B) ch(B), (30)
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where

A = 2ch*(p). (31}

With the constants given by (29) and (30), one obtains dual series equations analogous
to (14) and (15), i.e.

123 m?D,(1+k,,) sin(mx) = i F,sinfmx), 0O0<x<e, (32)
m=1,3,... m=1,3,...
> mD,sin(mx) = 0, ¢ < x<mn/2, (33)
m=1,3,,,,
where
1+k,, = [2(3+v)ch(B)sh(B)+ 2(1 — WBl/3+ VA, (34)
and

4 —_—

By techniques identical with those used earlier, the problem is reduced to obtaining the
solution of the Fredholm integral equation of the second kind

1
8p)+ f 0nR(p, dr = Kp),  0<p<1, (36)
[4]
where

hip) =2 ) F,J \(mpc) (37)
1,

and K(p, r) is the same as K(p, r) in (27) except that k, is replaced by k,,.

3. Physical quantities

A numerical solution of integral equations (24) and (36) is necessary to determine 8(p),
which will be used in the calculation of physical quantities. Of physical importance is the
strain energy and stress intensity factor.

The strain energy can be computed by calculating the work done by the applied load
through the plate displacement from

U= lf qw dA. (38)
24

Equation (38) can be written as the sum of two terms, the first representing the strain energy
of the undamaged plate and the second representing the increment of strain energy due
to the presence of the crack. The calculation is confined to the increment due to the crack.
Since D,, = 0 corresponds to an undamaged plate, the increment of strain energy is deter-
mined by those terms involving D,, only.
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The increment in strain energy becomes
b £
U = 2UDn?/g*a® = J J‘ [4,, ch(my)+ B,,my sh(my)
~-bvO0

+4D,, sh(my)+ D,;my ch(my)] sin(mx) dx dy. (39)

Performing the integrations yields

U=4 i m™2{ A, sh(B)+ BB ch(B)—sh(B)] + D[ sh(B)+(1 —m(1 —ch(BN)}  (40)

m=1,3,...
where
A4, = —D,[B*+nsh*B), (41)
AB,, = —D,[n+ch*(B)], 42)
for a clamped plate, and
- AA,, = —2D,[n sh(f) ch(B)+B], 43)
AB,, = —2D,, sh(f)ch(f), (44)

for a simply supported plate.

~ The moment singularity for M, can be simply obtained for x = ¢* from (5), (19) and (23)
after an integration by parts. The moment has the form M, /qa* = k/s*, where sis the distance
from the crack tip. The factor k depends directly upon 6(1) and is given as

k= —(c/2)*0(1). (45)
When ¢ « 1, the integrand of (24) can be ignored, yielding
0(p) = h(P)ly=w> (46)
which leads to
= (c/2)}/m3(3+v). (47)

CASE II: CRACK IN CENTER

The second case studied is that of a plate damaged by a single crack in the center of
the plate [see Fig. 1(b)]. As in Case I, the plate is simply supported at x = 0, = and either
clamped or simply supported at y = +b. The displacement w has the form given in (7) and

(8).

i. Clamped boundary conditions for y = +b
For Case 11, the boundary conditions (2)-{4) are the same as for Case I, but the mixed
conditions (5) and (6) are interchanged, i.e.
ow _
dy

Pw  Pw
5;2__}_‘)5?:0’ y=0, ¢<x<mnR. (49)

0, y =0, 0<x<e, (48)
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Equations (48) and (49) lead to dual series equations analogous to (14) and (15) as

Y E,sin(mx) = Z F,, sin(mx), c<x <2, (50}
m=1,3,... m=1,3,...
Y m'(l+k,) E,sinmx)=0, 0<x<c (51)
m=1,3,...
where
E, = m’D,(1+k,). (52)
To facilitate the solution, let
E,=F,+G,. (53)
In this manner, the dual series equations become
> G,sinmx) = 0, ¢ < x <mf2, (54)
m=1,3,...
Y. mYl+k,) 'G,sin(mx) = — Y m}l+k,) 'F,sin(mx), 0<x<ec.
m=1,3,... m=1,3,...
(55)

Redefinition of the constants by equation (53) enables reduction of the results to the case
of a completely cracked plate when ¢ — 0. Equations (54) and (55) are rewritten as

oo

Y Gpsin(mx) =0, ¢ < x < n/2, (56)
m=1,3,...
> m™MY1+K,)G,, sin(mx) = P(x), 0<x<e, (57)
m=1,3,...
where

Px)=—- Y m '(1+k,) 'F,sin(mx), (58)

m=1.3,...
K, = —k,l+k,) . (59)

Here, K,, - 0 as m — o0, since it is directly proportional to k,,. Analogously to Case 1,
G,, is given the representation

Gy = | o) omn . (60)
0

which automatically satisfies (56) and provides the correct singularity by virtue of the

identityt

e

2 Y Jo(mtycos(mx) = H(t—x)/t* —x*) .

m=1,3,...

+ The integral representations are obtained from the same considerations used in the development of (18)
and (19) except that the contour integration will involve Jo(z¢) instead of J,(z1).
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Then (57) is written as

f ‘ o(1) i Jo(mt) sin(mx) dt + f (1) i K, Jo(mt) sin(mx)dt = P(x).  (61)

0 m=1,3,... 1] m=1,3,..

C

Substitution of the integral representation

2 i Jolmt) sin(mx) = H(x —1)/(x* —?)* +2 on [14exp(ms)] ™ o(ts) sh(xs) ds
0

m=1,3,...

leads to the integral equation

1
0(0)+ f 67K (p, ) dr = h(p), (62)
0
where "
o) = =2 5 (L+ky)  Fydolmpo), (63)
m=1,3,...

K(p,r) = 2rc? {Jm s[1 +exp(rs)] ~ 1 o(rsc)l o(psc) ds+ i mK . J o(mpc)J O(mrc)}. (64)

0

2. Simply supported boundary conditions for y = +b

This analysis follows that for the simply supported plate for Case I. In equations
(62)64), h(p), K(p, r) are replaced by h(p), K(p, r) and are defined in terms of the barred
quantities k,, and F,, in (34) and (35).
3. Physical quantities

The strain energy is computed from (40) through (44), where D,, is redefined as

1
D, = m (1+k,)* [Fm +mc? f p0(p)J o(mpc) dp] ) (65)
4]
The stress intensity factor k is given as
k = (c/2)*0(1)/2 (66)
and, when ¢ « 1,
(2/c)tk = TvéQR)/B+v)m®, (67)

where £(3) = 1.0518 is a Riemann Zeta function.

CASE I: CRACK ON ONE SIDE ONLY

The geometry and coordinate system for this case are shown in Fig. 1(c). It is assumed
that the plate is simply supported at x = 0, = and that the other two sides are either clamped
or simply supported at y = +b.

1. Clamped boundary conditions for y = +b

For this case, the boundary conditions are the same as for Case I, (2)-(6), with the
exception that (6) becomes

aw__

e y=0, c<x<m, (68)
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and symmetry about the line x = 7/2 is no longer preserved. Thus, the expansions given in
(7) and (8) must be rewritten to include all integers as

W= Wy +wy, (69)
where
4 4 e} f<e)
Wi= Y mTSsingmx),  wy, = Y Y, singmx) (70)
D m=1,3,... m=1,2,...
and
ga*
Y, = —b——[A,,, ch(my)+ B,,my sh(my)+ C,, sh(my)+ D,,my ch(my)). (71)

The analysis for Case I is applicable for Case I1I and results in the dual series equations
Y ma,(l+k,)sinfmx) = F(x), 0<x<c, (72)
m=1

Y ausinmx) =0, c¢<x<mn, (73)
m=1

where mD,, = a,, and all definitions of constants are given by (101{13). By giving q,, the
integral representation as in (22}, it is easily verified that (73) is automatically satisfied.
Equation (72) is written as

d

s f oft) "21 Jy(mt) cos(mx} dt +ac~i;c- J- ‘ @(t) mi::l kJ ((mt)cos(mx}dt = — F{t),

0 0

(74)
0gx<e.

The first infinite series in (74) may be changed into infinite integrals by means of the

identity

i J1(mt) cos{mx) = j ) Ji(st)cos{sx}ds—2 fw [exp(2rs)— 1]~ ((st)ch(sx) ds, (75}
m=1 0

0

which may be derived from consideration of the contour integration of

ei1tz ) »
L sn (nz)J {tz) cos(xz) dz (76)

taken around the first quadrant. Equations (21) and (75) are substituted into equation (74),
leading to the Fredholm integral equation of the second kind

1
0o+ fo Bp)K(p.)dr = hip), 0 <p<1, (77)

where

hp) = 23 F o J 1(mpo), (78)
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and

K(p,r) = rc? {fw 2sfexp(2as)— 117 (rsc) {(psc) ds+ i mk,.J 1(mrc)Jl(mpc)}. (79)
0

m=1

For this case, the coefficients k,, and F,, are given by (16) and (17).

2. Simply supported boundary conditions for y = +b

When the plate is simply supported at y = +b, boundary condition (28) has to be
used instead of (3). The coefficients are given by (29) and (30), and the result, a Fredholm
integral equation of the second kind, is

1
6(p)+f 0K, ) dr = Fp), 0<p<1, (80)
where
)= S Fodimpo) (81)
m=1,3,...
and

a0

K(p,r) = rc? {f: 2s[exp(2ns)— 117 11 (rsc)l (psc) ds+ 2 mk,,J (mpc)J 1(mrc)}, (82)

m

and k,, F,, are given by (34) and (35).

3. Physical quantities

For Case II1, the increment in strain energy is given by (40}, with the exception that m
assumes all integer values from one to infihity. 4,, and B,, are defined by (41)-(44), and the
stress intensity factor is given by (45) and for ¢ « 1

k = vet/An*(3+v),/2. (83)

NUMERICAL RESULTS AND CONCLUSIONS

The physical quantities are obtained after the integral equations for the two sets of
boundary conditions at y = +b are solved. The various integral equations are solved by
considering the values for 8(p) over a finite number of equally spaced points and establishing
a matrix equation that is equivalent to the integral equation. A sufficient number of points
is chosen to ensure the accuracy of the solution, and the resulting matrix equation is solved
with a digital computer. Once the values for 8(p) for the different cases are obtained, the
strain energy change is determined by calculation of the coefficients D,,.

The strain energy change is calculated as the difference between the strain energy for an
undamaged plate and that for a plate containing a crack for two aspect ratios, b/x = 0.2, 0-6
and a Poisson’s ratio of 0-3. Table 1 has been included to illustrate the magnitude of the
change in strain energy due to the crack in relation to the total strain energy. The first
column in Table 1 gives the value of the strain energy for an undamaged plate with a
clamped boundary condition and the second column shows the corresponding increase in
strain energy that would result if the plate was completely cracked. The third and fourth
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TABLE |. STRAIN ENERGY FOR UNDAMAGED AND COMPLETELY CRACKED PLATES

Clamped Simply supported
U, U U, U

bin Undamaged Completely Undamaged Completely

cracked cracked
0-1 3934 x 107 4.433x10°° 2127 x 1076 265-3x 1079
02 0-000112 0000111 0-000522 0-001627
03 0-000748 0-000609 0-002841 0-003738
0-4 0-002694 0-001693 0-008196 0005630
G5 0-006802 0003173 0-016803 0-006790
06 0-013585 0004616 0-028109 0-007242
0-7 0023030 0-005688 0-041347 0-007216
0-8 0034727 0-006286 0055856 0-006933
0-9 0-048110 0-006482 0-071155 0-006547
10 0-062654 0-006409 0-086933 0-006145
-1 0-077950 0006189 0-102994 0-005773
12 0-093715 0-005906 0-119221 0-005446
13 0-109764 0-005616 0-135543 0005171
1-4 0-125981 0-005345 0-151920 0-004944
1-5 0-142297 0-005106 0-168329 0-004760
1-6 0-158670 0-004903 0-184755 0004612
1.7 0-175076 0004734 0201191 0-004494
i-8 0191501 0-004596 0217633 0-004401
19 0207937 0-004485 0-234078 0004328
2.0 0-224378 0-004396 0-250525 0-004271
2:1 (240823 0004325 0266973 0-004226
22 0-257270 0-004270 0-283422 0-004191
2:3 0273718 0-004226 0-299871 0-004165
2.4 0-290166 0-004191 0-316320 0-004144
2.5 0-306615 0-004165 0-332769 0-004128

columns are for the case of a simply supported plate. It is noted that when b/n is small,
the difference in the increase in strain energy between the simple and clamped cases is
substantial, indicating that the two cases must be considered separately in this range.
Figure 2 shows the strain energy change calculated for a completely cracked plate, the
solid curve representing clamped boundary conditions at y = +b and the dashed curve
simple supportsat y = +b. Aslongas b/n < 0.91, the strain energy for the simple supports
is always greater than that for the clamped supports. When b/n > 0-91, the converse is true.
The small difference between the two cases indicates that the effect of the constraints at
y = tb is not especially significant in this range.

Figure 3 shows the change in strain energy due to the crack for Cases 1, Il and 111. The
aspect ratio here is b/n = 0-2. The completely cracked plate is represented by 0-5 on the
abscissa and the numbers correspond to the values given in Fig. 2 for the appropriate
boundary conditions. The effect of the aspect ratio is to magnify the change in strain energy
when the simply supported and clamped plates are compared. Clamping will tend to
decrease the possibility toward fracture since the strain energy release rate will be smaller.
The end-points on all curves are of interest, and, with the exception of Case | at ¢/n = 05,
they all have horizontal tangents, which indicates a zero strain energy release rate. The
exceptional case corresponds to two external cracks (Case I), and when ¢/m — 0.5, the
material holding the two plates together becomes vanishingly small and a very rapid change
is expected in the strain energy.
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Figure 4 shows the strain energy change for an aspect ratio of b/m = 0-6. Qualitatively,
the greatest change due to the increase in aspect ratio is the difference in magnitude of the
strain energy. All other features are the same including the end-point considerations.

The tendency of the crack to propagate can be estimated if the moment stress intensity
factor is calculated. Figure 5 shows the moment stress intensity factor for M, for the three
cases for an aspect ratio of b/m = 0-6. It is noted that the factor k is proportional to the
square root of crack length as ¢/n — 0-5 for Case 11T and therefore has zero value for the
completely cracked and uncracked states. The curves indicate that if crack propagation
were to commence at some finite crack length, corresponding to a critical value of k, then
cracking would continue until the same value of k was again reached. At that point, a
further cracking would imply values of k too small to produce propagation, and hence
there would be no further increase in the crack length. This same behavior also exists for
Case 111, since k = 0 at both end-points. However, for Case I, once crack propagation
begins it will continue until the plate is fully cracked. For this case,as ¢/n — 0.5, k is inversely
proportional to the square root of 0.5 —c¢/n.}
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AGerpakT—/laeTca aHanui ¢ Henbilo MCcnexoBanus gdexTon TEOMETPHUK TPELLHH B KOHEUHbIX MPAMOYIo-
AHBIX TUTacTHHKAX. PaccMatpueatotes Tpu ciyvas: (1) TpellMHA HAa MPOTHBOMOLOXHBIX Kpasx, (2) Tpeu-
MHa B UeHTpe M (3) TpelmHa TONMBKO Ha omHOM cTopowe. Kaxpas 3amava BBIPAXKAETCH yPOBHEHUAMMU
ABOWHBIX PAROB M CBOAMTCA C IOMOLIBIO CTAHAAPTHOI O METOAA K MHTETPAlIbHOMY ypoBHeHuio ®pearonbma,
KOTOPOE PELIAETCA YHCIICHHO. JIAIOTCH YMCIEHHBIE PE3yJIbTATHL JUIA 3HEPIMH NEPOPMALNM M daxropa
MHTEHCHBHOCTU MOMEHTHOTO HampsokeHusi. CpPaBHEHHME Pa3HBIX CIIY4aeB YKa3blbaeM BO3IMOKHbIE 3 dexThi
reOMETPHM B 3a7a4ax paclpoCTPAHEHUSA TPELUMH B KOHEYHBIX TLIACTHHKAX.

T See, e.g. [9], equation (52).
1 See [9], equation (56).



